Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water in order to prevent sediment accumulation in your hot water tank.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban storm-water runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Information on the Internet

The U.S. EPA (https://go.usa.gov/TFA9Mc) and the Centers for Disease Control and Prevention (www.cdc.gov). Websites provide a substantial amount of information on many issues relating to water resources, water conservation and public health. Also, the Ohio Environmental Protection Agency has a website (https://go.usa.gov/z3badj6) that provides complete and current information on water issues in Ohio, including valuable information about our watershed.

Questions?

Questions about the water system, which has been in operation since 1955, may be directed to Mark Day at 513-732-7945.
Disinfectant Level Goal:

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Disinfectant Level:

NA

ND (Not detected):

ppb (parts per billion): Analysis of the clarity, or turbidity, of water. Measurements are compared to the national turbidity guideline, which is 1 NTU (nephelometric turbidity unit).

Erosion of natural deposits:

No

Runoff from fertilizer use:

No

Leaching from run-off:

No

By-product of drinking water disinfection:

No

Runoff from aluminum factories:

No

Discharge of drilling wastes:

No

Discharge from fertilizer and aluminum factories:

No

TYPICAL SOURCE

VIOLATION

RANGE

AMOUNT DETECTED

TEST RESULTS

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED

<table>
<thead>
<tr>
<th>Source Water Description</th>
<th>Table 1: Test Results for Trihalomethanes (ppb)</th>
<th>Table 2: Test Results for Nitrate (ppm)</th>
<th>Table 3: Test Results for Copper (ppm)</th>
<th>Table 4: Test Results for Lead (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
<td>Subtotal</td>
</tr>
</tbody>
</table>
| | Nitrate | Lead | Copper | Lead in drinking water is primarily from materials plumbing. We are responsible for providing high-quality drinking water, but cannot control the variety of materials sitting for several hours, you can minimize the potential exposure to elevated levels of the dissolved metals increases adverse health risks. However, the water continues to meet drinking water standards. These well fields are monitored for contamination and cared for under an Ohio EPA–endorsed Wellhead Protection Program. The water is also monitored for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, this information is not available.

Lead in drinking water:

NA

CHILDREN

NA

VIOLATION

RANGE

AMOUNT DETECTED